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A Monte Carlo method for simulating Compton scattering in high energy density applica-
tions has been presented that models the photon–electron collision kinematics exactly
[E. Canfield, W.M. Howard, E.P. Liang, Inverse Comptonization by one-dimensional relativ-
istic electrons, Astrophys. J. 323 (1987) 565]. However, implementing this technique typ-
ically requires an explicit evaluation of the material temperature, which can lead to
unstable and oscillatory solutions. In this paper, we perform a stability analysis of this
Monte Carlo method and develop two time-step limits that avoid undesirable behavior.
The first time-step limit prevents instabilities, while the second, more restrictive time-step
limit avoids both instabilities and nonphysical oscillations. With a set of numerical exam-
ples, we demonstrate the efficacy of these time-step limits.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Compton scattering is an important aspect of radiative transfer in high energy density applications [1]. In this process, a
photon collides with a free electron, altering the frequency and direction of the photon. The change in frequency of a scat-
tered photon corresponds to an energy exchange between the photon and electron, which in turn affects the material energy
and temperature. Canfield et al. have presented a Monte Carlo method for simulating Compton scattering that models the
photon–electron collision kinematics exactly [2]. However, because this technique involves sampling electron velocities
from a distribution that is a function of the material temperature, implementing it in problems where the material temper-
ature can vary in time typically requires approximating the temperature dependence of this distribution explicitly. This ex-
plicit evaluation can lead to unstable and oscillatory solutions.

In this paper, we perform a stability analysis of this Monte Carlo Compton-scattering method and present time-step limits
that avoid undesirable behavior [3]. To facilitate this work, we consider the Monte Carlo simulation of a spatially indepen-
dent, purely scattering radiative-transfer problem in which Compton scattering is treated with this Monte Carlo technique.
Examining a simplified problem is justified because it isolates the effects of Compton scattering and existing Monte Carlo
methods can robustly model other physics [4,5] (such as absorption, emission, sources, and photon streaming). Our analysis
begins by simplifying the equations that are solved via Monte Carlo within each time step using the Fokker–Planck approx-
imation [6–9]. Next, we linearize these approximate equations about an equilibrium solution such that the resulting linear-
ized equations describe perturbations about this equilibrium. We then solve these linearized equations over a time step and
determine the corresponding eigenvalues, quantities that can predict the behavior of solutions generated by a Monte Carlo
simulation as a function of time-step size and other physical parameters. With these results, we develop two time-step
. All rights reserved.
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limits. The first time-step limit prevents instabilities, while the second, more restrictive time-step limit avoids both insta-
bilities and nonphysical oscillations.

The approach described above is similar to our recent investigation of time discretizations for the Compton-scattering
Fokker–Planck equation [10]. In fact, our hope was to apply the time-step limits corresponding to a semi-implicit discreti-
zation, i.e., a combination of backward-Euler differencing and explicitly approximated temperature-dependent quantities,
directly to Monte Carlo simulations. Unfortunately, although sufficient for this semi-implicit discretization, we found that
these time-step limits were too large when used with Monte Carlo in the sense that they allowed undesirable behavior; a
semi-implicit discretization of the Fokker–Planck equation is apparently somehow ‘‘more stable” than a Monte Carlo simu-
lation in which the only approximation is an explicit evaluation of the material temperature. Thus, we were led to develop
the time-step limits in this paper.

We begin the remainder of this paper by presenting our simplified radiative-transfer problem and discussing its solution
by Monte Carlo. We then perform our stability analysis, which we follow by developing our time-step limits. Next, we dem-
onstrate the effectiveness of these time-step limits using a set of numerical examples. We conclude with a brief discussion.
2. Radiative transfer, Compton scattering, and Monte Carlo

The specific radiative-transfer problem we examine is described by [1]
1
c
@I
@t
þ rsI ¼

ZZ
m
m0

rsðm0 ! m;X0 �X; TÞIðm0;X0; tÞdm0 dX0; ð1Þ
and
dU
dt
¼
ZZZZ

1� m
m0

� �
rsðm0 ! m;X0 �X; TÞIðm0;X0; tÞdm0 dX0 dmdX: ð2Þ
Here, m is the photon frequency, X is the photon direction, t is the temporal variable, Iðm;X; tÞ is the radiation intensity, TðtÞ is
the material temperature, rsðm; TÞ is the total scattering opacity, rsðm0 ! m;X0 �X; TÞ is the differential scattering opacity, and
c is the speed of light. In addition, the material energy density UðTÞ is related to the material temperature through
dU
dT
¼ Cv ; ð3Þ
where Cv ðTÞ is the heat capacity. Note that we have neglected induced scattering in Eqs. (1) and (2), a physical effect that
would make these expressions nonlinear functions of the radiation intensity.

The differential scattering opacity, which models Compton scattering, has a complicated dependence on the material
temperature [1],
rsðm0 ! m;X0 �X; TÞ ¼ Ne

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

q 1�X0 � v=c
1�X � v=c

lKNðm00 ! m0;X
0
0 �X0Þf ðv; TÞdv: ð4Þ
In this expression, Ne is the electron density, v is the electron velocity, lKNðm00 ! m0;X
0
0 �X0Þ is the Klein–Nishina differential

scattering cross section, and f ðv; TÞ is the electron velocity distribution. The electron velocity distribution is a relativistic
Maxwellian of the form
f ðv; TÞ ¼ 1
4pc3

mc2

kT
e�mc2= kT

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2=c2
p� �

ð1� v2=c2Þ5=2K2ðmc2=kTÞ
; ð5Þ
where k is Boltzmann’s constant, mc2 is the electron rest mass in energy units, and K2 is the modified Bessel function of the
second kind of order two [11]. Also, the Klein–Nishina differential scattering cross section, which is valid in the electron rest
frame, is
lKNðm00 ! m0;X
0
0 �X0Þ ¼

3
16p

lTh
mc2

hðm00Þ
2 1þ ðX00 �X0Þ2 þ

hm00
mc2

hm0

mc2 ð1�X00 �X0Þ2
� �

d X00 �X0 � 1þmc2

hm0
�mc2

hm00

	 

: ð6Þ
Here, lTh is the Thomson cross section, h is Planck’s constant, and the subscript 0 denotes photon properties in the electron
rest frame. For a given value of the electron velocity, these rest-frame properties can be related to their laboratory-frame
counterparts with a Lorentz transformation [1,12]. The total scattering opacity is simply the differential scattering opacity
integrated over all outgoing frequencies and directions,
rsðm; TÞ ¼
ZZ

rsðm! m0;X �X0; TÞdm0 dX0: ð7Þ
Two quantities of interest derived from the radiation intensity are the spectral radiation energy density,
Eðm; tÞ ¼ 1
c

Z
Iðm;X; tÞdX; ð8Þ
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and the total radiation energy density,
EðtÞ ¼ 1
c

ZZ
Iðm;X; tÞdXdm

¼
Z

Eðm; tÞdm: ð9Þ
Because we have not included absorption, emission, or induced scattering in Eqs. (1) and (2), the equilibrium spectral radi-
ation energy density in this case is given by a Wien distribution:
Wðm; TÞ ¼ hNp

2
hm
kT

	 
3

e�hm=kT : ð10Þ
In this expression, Np is the photon density. Substituting Eq. (10) into Eq. (9) yields the total radiation energy density cor-
responding to a Wien distribution,
EðTÞ ¼ 3kTNp: ð11Þ
Furthermore, we can define a radiation heat capacity in a manner similar to Eq. (3) by differentiating Eq. (11) with respect to
temperature,
Cr ¼
dE
dT
¼ 3kNp: ð12Þ
To solve Eqs. (1) and (2) using Monte Carlo, we first prescribe a temporal grid 0 ¼ t0 < t1 < t2 < � � �. Then, within each
time step tn < t 6 tnþ1, we explicitly approximate the temperature dependence of the total and differential scattering opac-
ities and write Eq. (1) as
1
c
@I
@t
þ rs;nI ¼

ZZ m
m0

rsðm0 ! m;X0 �X; TnÞIðm0;X0; tÞdm0 dX0; ð13Þ
whereas further integrating Eq. (2) over the time step results in
Unþ1 � Un ¼
Z tnþ1

tn

ZZZZ
1� m

m0
� �

rsðm0 ! m;X0 �X; TnÞIðm0;X0; tÞdm0 dX0 dmdXdt: ð14Þ
The subscript n in Eqs. (13) and (14) denotes quantities evaluated at time tn. For each time step, we can determine the radi-
ation intensity from Eq. (13) with standard Monte Carlo methods. When a particle scatters, its new frequency and direction
are calculated as follows [2]:

1. sample a tentative electron velocity;
2. Lorentz transform the incident frequency and direction to the electron rest frame;
3. accept the electron velocity based on the value of the Klein–Nishina total scattering cross section [i.e., Eq. (6) integrated

over all outgoing rest-frame frequencies and directions], otherwise reject the electron velocity and return to the first step;
4. determine the outgoing frequency and direction in the electron rest frame according to the Klein–Nishina differential

scattering cross section;
5. Lorentz transform the outgoing frequency and direction back to the laboratory frame.

A complete description of this procedure is given in Ref. [2]. We note, however, that the fourth step above can be performed
using existing techniques [13,14], while in the first step the electron velocity is sampled from the temperature-dependent
distribution in Eq. (5), the same distribution that contains the temperature dependence of the total and differential scattering
opacities. Because this distribution must be fully specified at the start of each time step before the Monte Carlo simulation
begins, we employ the beginning-of-time-step value of the material temperature to process scattering events; it is for this
reason that we have evaluated the total and differential scattering opacities in Eqs. (13) and (14) explicitly. At the end of each
time step, we can update the material temperature through Eqs. (3) and (14).

3. Stability analysis

We begin our stability analysis by simplifying Eqs. (13) and (14) using the Fokker–Planck approximation [6–9],
1
rThc

@E
@t
¼ m

@

@m
m

kTn

mc2

@E
@m
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mc2 � 3
kTn

mc2
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� �
; ð15Þ
and
Unþ1 � Un ¼ �rThc
Z tnþ1
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E
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¼ �
Z
ðEnþ1 � EnÞdm: ð16Þ
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The second equality in Eq. (16) follows from Eq. (15). In these two expression, rTh is the Thomson opacity,
rTh ¼ NelTh: ð17Þ

The Fokker–Planck approximation is valid when the photon frequency and material temperature are small with respect to
the electron rest mass, i.e.,
hm
mc2 � 1 and

kTn

mc2 � 1: ð18Þ
Although these conditions are not always satisfied in practice, our ultimate goal in employing this approximation is to gen-
erate time-step limits, not actual solutions.

Next, we linearize Eqs. (15) and (16) by first expressing the material temperature and spectral radiation energy density as
Tn ¼ T þ dTn; ð19Þ

and
Eðm; tÞ ¼Wðm; TÞ þ dEðm; tÞ: ð20Þ

Here, dTn and dE are (ideally small) perturbations in the material temperature and spectral radiation energy density, respec-
tively, about their equilibrium values, and T is now the equilibrium material temperature. When we substitute Eqs. (19) and
(20) into Eq. (15), ignore terms of order OðdTndEÞ, and make use of Eq. (10), we have
1
rThc

@

@t
dE ¼ m

@

@m
m

kT
mc2

@

@m
dEþ hm

mc2 � 3
kT

mc2
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� �
þ hNp

2
kdTn

mc2

hm
kT

	 
5

� 4
hm
kT

	 
4
" #

e�hm=kT ; ð21Þ
which is the linearized version of Eq. (15). In fact, Eq. (21) is of the same form as Eq. (15), except there is now a source term
on the right side that is proportional to the material-temperature perturbation. Also, evaluating Eq. (16) with Eqs. (19) and
(20) yields
UðT þ dTnþ1Þ þ
Z

dEnþ1 dm ¼ UðT þ dTnÞ þ
Z

dEn dm: ð22Þ
If we expand UðT þ dTnÞ in a Taylor series about T, apply Eq. (3), and ignore terms of order OðdT2
nÞ, we can write
UðT þ dTnÞ ¼ UðTÞ þ dTn
dU
dT
þ OðdT2

nÞ

� UðTÞ þ CvðTÞdTn: ð23Þ
Combining Eqs. (22) and (23) gives the linearized version of Eq. (16),
CvðTÞdTnþ1 þ
Z

dEnþ1 dm ¼ CvðTÞdTn þ
Z

dEn dm: ð24Þ
For more details regarding this linearization process, see Ref. [10].
We can simplify Eqs. (21) and (24) by defining the following dimensionless transformations:
hm
kT
! x; ð25Þ

kT
mc2 rThct ! t; ð26Þ

dEðm; tÞ
hNp

! dEðx; tÞ; ð27Þ

dTn

T
! dTn; ð28Þ

CvðTÞ
kNp

! Cv : ð29Þ
Note that x represents a nondimensional photon frequency. Using Eqs. (25)–(29) allows us to express Eqs. (21) and (24) as
@

@t
dE ¼ MdEþ dTnF; ð30Þ
and
CvdTnþ1 þ
Z 1

0
dEnþ1 dx ¼ CvdTn þ

Z 1

0
dEn dx; ð31Þ
where it is understood that all quantities are dimensionless. In Eq. (30), M is the nondimensional Fokker–Planck operator,
MdE ¼ x2 @2

@x2 dEþ xðx� 2Þ @
@x

dEþ xdE; ð32Þ
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and
FðxÞ ¼ 1
2
ðx5 � 4x4Þe�x: ð33Þ
We continue by solving Eqs. (30) and (31) over a time step. This step was not necessary in our previous stability analysis
of time discretizations for the Compton-scattering Fokker–Planck equation because only quantities evaluated at the begin-
ning and end of a time step were involved in this case [10]. To represent the frequency dependence of dE, we employ an
expansion based on the eigenfunctions of M. The eigenvalue problem of interest is then
Myk þ kyk ¼ 0: ð34Þ
Here, ykðxÞ is an eigenfunction of M and k is the corresponding eigenvalue. Kompaneets [6] and Pomraning [15] have shown
that the solution to Eq. (34) consists of two discrete eigenfunction–eigenvalue pairs,
y0ðxÞ ¼
1ffiffiffi
2
p x3e�x; k ¼ 0; ð35Þ
and
y2ðxÞ ¼
1ffiffiffi
2
p ðx3 � 2x2Þe�x; k ¼ 2; ð36Þ
and a continuum of eigenfunction–eigenvalue pairs,
ykðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh½paðkÞ�
pkðk� 2Þ

s
x3=2þiaðkÞe�xW½�3=2þ iaðkÞ;1þ 2iaðkÞ; x�; k P 9=4: ð37Þ
In Eq. (37), W is the confluent hypergeometric function of the second kind [16] and a is given by
aðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k� 9

4

r
: ð38Þ
These eigenfunctions are orthogonal with respect to the weighting function [15]
wðxÞ ¼ ex

x4 : ð39Þ
Thus, an arbitrary function f ðxÞ may be expanded as
f ¼ c0y0 þ c2y2 þ
Z 1

9=4
ckyk dk; ð40Þ
where the coefficients in this expansion are defined by
c0 ¼
Z 1

0
f ðxÞy0ðxÞwðxÞdx; ð41Þ

c2 ¼
Z 1

0
f ðxÞy2ðxÞwðxÞdx; ð42Þ
and
ck ¼
Z 1

0
f ðxÞykðxÞwðxÞdx: ð43Þ
Therefore, we express dE using
dE ¼ a0y0 þ a2y2 þ
Z 1

9=4
akyk dk: ð44Þ
Here, a0ðtÞ; a2ðtÞ, and akðtÞ are time-dependent expansion coefficients that are yet to be determined. A similar expansion of
Eq. (33) is [10]
F ¼ b0y0 þ b2y2 þ
Z 1

9=4
bkyk dk; ð45Þ
with
b0 ¼ 0; ð46Þ
b2 ¼

ffiffiffi
2
p

; ð47Þ
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and
bk ¼
p
2

k2ðk� 2Þ
cosh½paðkÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh½paðkÞ�
pkðk� 2Þ

s
: ð48Þ
Substituting Eq. (44) into Eq. (30) and applying Eqs. (34), (45), (46), (47), and the orthogonality of Eqs. (35)–(37) shows
that a0, a2, and ak must satisfy
d
dt

a0 ¼ 0; ð49Þ

d
dt

a2 ¼ �2a2 þ
ffiffiffi
2
p

dTn; ð50Þ
and
d
dt

ak ¼ �kak þ bkdTn: ð51Þ
When we solve Eqs. (49)–(51), we see that the end-of-time-step values of these expansion coefficients are related to their
beginning-of-time-step counterparts by
a0;nþ1 ¼ a0;n; ð52Þ

a2;nþ1 ¼ a2;ne�2Dt þ 1ffiffiffi
2
p 1� e�2Dt

� �
dTn; ð53Þ
and
ak;nþ1 ¼ ak;ne�kDt þ bk

k
ð1� e�kDtÞdTn: ð54Þ
In Eqs. (53) and (54), Dt ¼ tnþ1 � tn is the time-step size, a quantity that for simplicity we assume is constant. Also, evaluating
Eq. (31) with Eq. (44) yields
CvðdTnþ1 � dTnÞ þ 3
ffiffiffi
2
p
ða0;nþ1 � a0;nÞ þ

ffiffiffi
2
p
ða2;nþ1 � a2;nÞ þ

Z 1

9=4

2
k

bkðak;nþ1 � ak;nÞdk ¼ 0; ð55Þ
where we have made use of
Z 1

0
y0 dx ¼ 3

ffiffiffi
2
p

; ð56ÞZ 1

0
y2 dx ¼

ffiffiffi
2
p

; ð57Þ
and [10]
Z 1

0
yk dx ¼ pkðk� 2Þ

cosh½paðkÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh½paðkÞ�
pkðk� 2Þ

s
¼ 2

k
bk: ð58Þ
Eqs. (52)–(55) represent a complete solution of Eqs. (30) and (31) over a time step, that is, they determine dTnþ1 and the
expansion coefficients of dEnþ1 in terms of dTn and the expansion coefficients of dEn.

We now look for solutions to Eqs. (52)–(55) of the form
a0;n ¼ xna0; ð59Þ
a2;n ¼ xna2; ð60Þ
ak;n ¼ xnak; ð61Þ
and
dTn ¼ xndT: ð62Þ
Here, a0; a2, ak, and dT are components of an eigenfunction of Eqs. (52)–(55), while x is the corresponding eigenvalue or
amplification factor. Amplification factors provide insight into the behavior of solutions to Eqs. (52)–(55), and consequently
Eqs. (30) and (31), as a function of time-step size and other physical parameters. For example, if jxj > 1, then from Eqs. (59)–
(62) the magnitude of the solution can grow without bound, in which case the solution is considered unstable. In addition, if
x < 0, then Eqs. (59)–(62) show that the solution can nonphysically oscillate. (We will prove that there are no complex
amplification factors in Appendix A). This approach is somewhat similar to von Neumann analysis, the standard method
for investigating stability properties of time-discretization schemes [17]. Furthermore, if the Fokker–Planck approximation
is accurate such that the conditions in Eq. (18) are satisfied, and our linearization process is valid such that the perturbations
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in Eqs. (19) and (20) are sufficiently small, then the amplification factors for Eqs. (52)–(55) should also predict the behavior
of Monte Carlo-generated solutions to Eqs. (13) and (14).

When we substitute Eqs. (59)–(62) into Eqs. (52)–(55), we have
ðx� 1Þa0 ¼ 0; ð63Þ

ðx� e�2DtÞa2 ¼
1ffiffiffi
2
p ð1� e�2DtÞdT; ð64Þ

x� e�kDt
� �

ak ¼
bk

k
ð1� e�kDtÞdT; ð65Þ
and
ðx� 1Þ CvdT þ 3
ffiffiffi
2
p

a0 þ
ffiffiffi
2
p

a2 þ
Z 1

9=4

2
k

bkak dk

 !
¼ 0: ð66Þ
We can now use Eqs. (63)–(66) to determine valid amplification factors. However, care must be taken when solving Eqs.
(63)–(65) for a0; a2, and ak as the terms in parentheses on the left sides of these expressions are possibly zero, and thus
a straightforward solution may lead to singular quantities. Specifically, we see from Eqs. (63) and (64) that there are discrete
singularities at x ¼ 1 and x ¼ x1, where
x1 ¼ e�2Dt : ð67Þ
In addition, because k varies from 9=4 to infinity, Eq. (65) shows that there is a continuum of singularities for 0 < x 6 x2,
where
x2 ¼ e�9=4Dt : ð68Þ

Fortunately, these singularities represent values of x that are neither negative nor greater than unity in magnitude and thus
cannot cause instabilities or nonphysical oscillations. If we avoid these singularities and disregard any corresponding ampli-
fication factors, we can directly solve Eqs. (63)–(65) to write
a0 ¼ 0; ð69Þ

a2 ¼
1ffiffiffi
2
p 1� e�2Dt

x� e�2Dt
dT; ð70Þ
and
ak ¼
bk

k
1� e�kDt

x� e�kDt
dT: ð71Þ
Also, satisfying Eq. (66) in this case requires
CvdT þ 3
ffiffiffi
2
p

a0 þ
ffiffiffi
2
p

a2 þ
Z 1

9=4

2
k

bkak ¼ 0: ð72Þ
Then, evaluating Eq. (72) with Eqs. (69)–(71) and making use of Eq. (48) allows us to define a characteristic equation for the
remaining amplification factors as
HðxÞ ¼ 0; ð73Þ

where
HðxÞ ¼ Cv þ
1� e�2Dt

x� e�2Dt
þ p

2

Z 1

9=4
kðk� 2Þ 1� e�kDt

x� e�kDt

tanh½paðkÞ�
cosh½paðkÞ� dk: ð74Þ
Valid amplification factors are roots of the characteristic equation such that they satisfy Eq. (73).
An inspection of Eq. (74) reveals that H has the following properties:
lim
x!�1

HðxÞ ¼ Cv > 0; ð75Þ

dH
dx
¼ � 1� e�2Dt

ðx� e�2DtÞ2
� p

2

Z 1

9=4
kðk� 2Þ 1� e�kDt

ðx� e�kDtÞ2
tanh½paðkÞ�
cosh½paðkÞ� dk < 0: ð76Þ
In addition, we see that H diverges to negative infinity as x approaches x1 from the left and diverges to positive infinity as x
approaches x1 from the right. With these characteristics of H, we can predict the locations of solutions to Eq. (73):

� x 6 0: In this region, H monotonically decreases from its asymptotic value of Cv to Hð0Þ. Thus, there is a single root if
Hð0Þ 6 0. Otherwise, there are no roots.

� x2 < x < x1: Here, H monotonically decreases to negative infinity. Thus, there is a single root if H is positive near x2.
Otherwise, there are no roots.

� x1 < x: In this region, H monotonically decreases from positive infinity to its asymptotic value of Cv . Thus, there are no roots.
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Eqs. (67) and (68) show that if there is a root satisfying x2 < x < x1, this root is positive and less than unity and cannot
produce undesirable behavior. Therefore, only the existence and location of the nonpositive root can predict the occurrence
of unstable and oscillatory solutions.

In Fig. 1, we plot an example of H for specific values of Cv and Dt. Note that this function is not defined in the shaded
region ð0 < x < x2Þ or at x ¼ 1. Although we have depicted a nonpositive root and a root satisfying x2 < x < x1, in reality
these roots may or may not exist depending on the actual values of Cv and Dt.

4. Time-step limits

In the previous section, we found that we only need to consider the nonpositive root of Eq. (73) in order to predict
whether solutions of Eqs. (30) and (31), and ideally those of Eqs. (13) and (14) generated by a Monte Carlo simulation, will
be unstable or exhibit nonphysical oscillations. We now make use of this fact to develop two time-step limits that avoid
undesirable behavior.

We first present a time-step limit that prevents amplification factors less than negative one and the accompanying insta-
bilities. As discussed above, H is a monotonically decreasing function of x for x 6 0. Thus, we can ensure that there are no
roots of Eq. (73) less than negative one by requiring H be non-negative at this value,
Hð�1ÞP 0: ð77Þ
Combining Eqs. (74) and (77) reveals that the time-step size must satisfy
Cv �
1� e�2Dt

1þ e�2Dt
� p

2

Z 1

9=4
kðk� 2Þ1� e�kDt

1þ e�kDt

tanh½paðkÞ�
cosh½paðkÞ� dk P 0: ð78Þ
The left side of this expression is a monotonically decreasing function of Dt,
d
dDt

Cv �
1� e�2Dt

1þ e�2Dt
� p

2

Z 1

9=4
kðk� 2Þ1� e�kDt

1þ e�kDt

tanh½paðkÞ�
cosh½paðkÞ� dk

( )

¼ �4
e�2Dt

ð1þ e�2DtÞ2
� p

Z 1

9=4
k2ðk� 2Þ e�kDt

ð1þ e�kDtÞ2
tanh½paðkÞ�
cosh½paðkÞ� dk < 0; ð79Þ
and has a minimum value of
lim
Dt!1

Cv �
1� e�2Dt

1þ e�2Dt
� p

2

Z 1

9=4
kðk� 2Þ1� e�kDt

1þ e�kDt

tanh½paðkÞ�
cosh½paðkÞ� dk

( )
¼ Cv � 1� p

2

Z 1

9=4
kðk� 2Þ tanh½paðkÞ�

cosh½paðkÞ� dk: ð80Þ
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We can evaluate the right side of Eq. (80) with Eq. (118),
Z 1

9=4
kðk� 2Þ tanh½paðkÞ�

cosh½paðkÞ� ¼
4
p
: ð81Þ
Eq. (80) then becomes
lim
Dt!1

Cv �
1� e�2Dt

1þ e�2Dt
� p

2

Z 1

9=4
kðk� 2Þ1� e�kDt

1þ e�kDt

tanh½paðkÞ�
cosh½paðkÞ� dk

( )
¼ Cv � 3: ð82Þ
Therefore, Eq. (78) is always met regardless of time-step size if
Cv P 3: ð83Þ
Casting Eq. (83) into dimensional units via Eq. (29) yields
CvðTÞP 3kNp; ð84Þ
or, after applying Eq. (12),
CvðTÞP Cr: ð85Þ
Eq. (85) has the interpretation that when the material heat capacity is larger than the radiation heat capacity, we can expect
the material temperature to vary more slowly in time than the radiation intensity, and it is appropriate to explicitly approx-
imate the temperature dependence of the total and differential scattering opacities in Eqs. (13) and (14).

If Eq. (85) is not satisfied, we are compelled to solve Eq. (78) numerically for the corresponding time-step limit. This pro-
cess is most likely impractical. As an alternative, we expand Eq. (78) in a Taylor series about Dt ¼ 0,
Cv � 1þ p
4

Z 1

9=4
k2ðk� 2Þ tanh½paðkÞ�

cosh½paðkÞ� dk

( )
Dt þ OðDt3ÞP 0; ð86Þ
where the OðDt2Þ term is identically zero. For sufficiently small values of Dt, Eq. (86) should be an accurate approximation of
Eq. (78). Using Eq. (119),
Z 1

9=4
k2ðk� 2Þ tanh½paðkÞ�

cosh½paðkÞ� dk ¼ 20
p
; ð87Þ
and ignoring the OðDt3Þ term allows us to write Eq. (86) as
Cv � 6Dt P 0: ð88Þ
When we solve this expression for Dt and transform the results into dimensional units through Eqs. (26) and (29), we see
that an approximate time-step limit is
Dt 6
1
6

1
rThc

mc2

kT
CvðTÞ
kNp

: ð89Þ
A more restrictive condition that avoids both instabilities and nonphysical oscillations is to instead prevent negative
amplification factors altogether. Analogous to Eq. (77), we require in this case that H is non-negative at zero,
Hð0ÞP 0: ð90Þ
Substituting Eq. (74) into Eq. (90) shows that the time-step size must now satisfy
Cv þ 1� e2Dt þ p
2

lim
x!0�

Z 1

9=4
kðk� 2Þ 1� e�kDt

x� e�kDt

tanh½paðkÞ�
cosh½paðkÞ� dk P 0: ð91Þ
To determine the actual value of the time-step limit from Eq. (91), we again need a numerical calculation. We can develop an
approximate time-step limit by applying a Taylor-series expansion to Eq. (91) in a manner similar to Eq. (86),
Cv � 2þ p
2

Z 1

9=4
k2ðk� 2Þ tanh½paðkÞ�

cosh½paðkÞ� dk

( )
Dt � 2þ p

4

Z 1

9=4
k3ðk� 2Þ tanh½paðkÞ�

cosh½paðkÞ� dk

( )
Dt2 þ OðDt3ÞP 0: ð92Þ
When we evaluate Eq. (92) with Eq. (87) in addition to Eq. (120),
Z 1

9=4
k3ðk� 2Þ tanh½paðkÞ�

cosh½paðkÞ� dk ¼ 136
p

; ð93Þ
and ignore the OðDt3Þ term, we have
Cv � 12Dt � 36Dt2 P 0: ð94Þ
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Solving this quadratic equation for Dt and once more casting the resulting expression into dimensional units using Eqs. (26)
and (29) gives
Dt 6
1
6

1
rThc

mc2

kT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ CvðTÞ

kNp

s
� 1

" #
: ð95Þ
To calculate either the exact time-step limits from Eqs. (78) and (91), along with Eqs. (26) and (29), or their approximate
counterparts by employing Eqs. (89) and (95), or to determine whether a simulation is unconditionally stable through Eq.
(85), we also need a value for the equilibrium material temperature. For our simplified radiative-transfer problem, combin-
ing conservation of energy and Eqs. (9) and (11) yields
UðTÞ þ 3kTNp ¼ U½Tð0Þ� þ 1
c

ZZ
Iðm;X;0ÞdXdm: ð96Þ
Here, Tð0Þ and Iðm;X;0Þ are the initial material temperature and radiation intensity, respectively. Eqs. (3) and (96) form an
expression for the equilibrium material temperature. Of course, for more complex radiative-transfer problems, Eq. (96) may
need to be modified in order to account for a nonconstant photon density or a varying amount of total energy.
5. Numerical results

We now establish the effectiveness of our time-step limits using three test problems described by Eqs. (1) and (2). In
these problems, the (temperature-independent) heat capacity is Cv ¼ 0:1 GJ=keV=cm3, the photon density is
Np ¼ 6:24	 1023 cm�3, and the electron density is such that the Thomson opacity is rTh ¼ 1 cm�1. For these problem param-
eters, Eqs. (12) and (85) indicate that it is possible to produce unstable solutions if the time-step size is sufficiently large.

To simulate these problems via Monte Carlo, we represent the total scattering opacity with a multigroup frequency struc-
ture and a frequency and temperature-dependent fit evaluated at group centers [18]. In addition, although we report the
exact time-step limits for reference, we base our time-step sizes on the approximate time-step limits because they are much
easier to calculate and, as we will see, fairly accurate. All simulations used 100,000 particles.

In the first problem we examine, the initial material temperature is 1.5 keV and the initial radiation intensity is isotropic
and corresponds to a Wien distribution at 1 keV. For these initial conditions, the equilibrium material temperature is
1.125 keV, and the resulting approximate time-step limits are Dt 6 2:53 ns to avoid instabilities and Dt 6 1:05 ns to prevent
nonphysical oscillations. As a comparison, the exact stability time-step limit is Dt 6 2:82 ns and the exact oscillatory time-
step limit is Dt 6 1:01 ns. We simulated this problem with 1000 frequency groups uniformly spaced between 0 keV and
200 keV and time-step sizes of Dt ¼ 1:05 ns (the approximate oscillatory time-step limit), 2.10 ns (twice the approximate
oscillatory time-step limit), 2.53 ns (the approximate stability time-step limit), and 5.06 ns (twice the approximate stability
time-step limit). The material temperature generated by these calculations is plotted in Figs. 2 and 3. From Fig. 2, we see that
the material temperature monotonically decreases for Dt ¼ 1:05 ns and nonphysically oscillates before reaching equilibrium
for Dt ¼ 2:10 ns. Also, Fig. 3 shows that the material temperature again nonphysically oscillates as it moves towards equi-
librium for Dt ¼ 2:53 ns, while further increasing the time-step size to Dt ¼ 5:06 ns results in an unstable solution that even-
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Fig. 2. First problem material temperature for Dt = 1.05 ns and 2.10 ns.
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Fig. 3. First problem material temperature for Dt = 2.53 ns and 5.06 ns.
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tually produces a negative material temperature. Of course, this negative material temperature causes the simulation to stop.
We conclude that our time-step limits performed as intended for this problem; using the maximum time-step size avoids
undesirable behavior (i.e., instabilities for the stability time-step limit and both instabilities and nonphysical oscillations
for the oscillatory time-step limit), while doubling the time-step size yields undesirable behavior and demonstrates that
our time-step limits are not overly conservative.

The second problem we consider is nearly identical to the first except the initial material temperature is 100 keV and thus
the initial conditions are farther from equilibrium in this case. With these initial conditions, the equilibrium material tem-
perature is 25.75 keV, and the corresponding approximate time-step limits are Dt 6 0:110 ns to prevent instabilities and
Dt 6 0:0457 ns to avoid nonphysical oscillations. For reference, the exact stability time-step limit is Dt 6 0:123 ns and the
exact oscillatory time-step limit is Dt 6 0:0440 ns. We simulated this problem using 200 frequency groups logarithmically
spaced between 0.02 keV and 2000 keV and time-step sizes of Dt ¼ 0:0457 ns (the approximate oscillatory time-step limit),
0.0914 ns (twice the approximate oscillatory time-step limit), 0.110 ns (the approximate stability time-step limit), 0.183 ns
(four times the approximate oscillatory time-step limit), 0.220 ns (twice the approximate stability time-step limit), and
0.440 ns (four times the approximate stability time-step limit). The material temperature calculated by these simulations
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Fig. 4. Second problem material temperature for Dt = 0.0457 ns, 0.0914 ns, and 0.110 ns.
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Fig. 5. Second problem material temperature for Dt = 0.183 ns and 0.220 ns.
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is displayed in Figs. 4 and 5. We see from Fig. 4 that the material temperature monotonically approaches equilibrium for
time-step sizes as large as Dt ¼ 0:110 ns. In addition, Fig. 5 shows that the material temperature nonphysically oscillates
but eventually reaches equilibrium for Dt ¼ 0:183 ns and is barely stable for Dt ¼ 0:220 ns. Employing a time-step size of
Dt ¼ 0:440 ns produced a negative material temperature at the end of the first time step instead of an unstable solution,
and thus we do not present these results. Again, our time-step limits worked as designed, although they are conservative
by at most factor of four in this problem as opposed to the factor of two in the previous problem.

The final problem we examine has an initial material temperature of 1 keV and an initial radiation intensity that is iso-
tropic but represented by a delta function in frequency such that all photons begin with a frequency of hm ¼ 97:4 keV (the
center of group 148). These initial conditions yield an equilibrium material temperature of 24.6 keV, and the resulting
approximate time-step limits are Dt 6 0:115 ns to prevent instabilities and Dt 6 0:0478 ns to avoid nonphysical oscillations.
For comparison, the exact stability time-step limit is Dt 6 0:129 ns and the exact oscillatory time-step limit is
Dt 6 0:0460 ns. We simulated this problem using the same frequency-group structure as in the previous problem and
time-step sizes of Dt ¼ 0:0478 ns (the approximate oscillatory time-step limit), 0.0956 ns (twice the approximate oscillatory
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Fig. 6. Third problem material temperature for Dt = 0.0478 ns and 0.0956 ns.
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Fig. 7. Third problem material temperature for Dt = 0.115 ns and 0.230 ns.
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time-step limit), 0.115 ns (the approximate stability time-step limit), 0.230 ns (twice the approximate stability time-step
limit), and 0.460 ns (four times the approximate stability time-step limit). The material temperature produced by these cal-
culations is plotted in Figs. 6 and 7. From Fig. 6, we see that the material temperature increases towards equilibrium without
oscillating for Dt ¼ 0:0478 ns and is nonmonotonic during the second time step for Dt ¼ 0:0956 ns. Also, Fig. 7 shows that
the material temperature is slightly more oscillatory for Dt ¼ 0:115 ns than for Dt ¼ 0:0956 ns and exhibits large nonphys-
ical oscillations for Dt ¼ 0:230 ns. We do not plot the material temperature for Dt ¼ 0:460 ns as it is negative at the end of the
second time step in lieu of being unstable. Thus, for this problem, our time-step limits are once more conservative by at most
a factor of four, and we again conclude that they performed as intended.

6. Conclusions

We have performed a stability analysis of a Monte Carlo method for simulating Compton scattering in high energy density
applications. With the results of this analysis, we have developed two time-step limits that avoid undesirable behavior. The
first time-step limit prevents instabilities, while the second, more restrictive time-step limit avoids both instabilities and
nonphysical oscillations. In fact, we have presented two versions of each time-step limit. The first version must be deter-
mined by solving a nonlinear inequality, whereas the second version is an approximation of the first that can be written
in closed form. We have exclusively considered these approximate time-step limits because they are much easier to calculate
and fairly accurate as compared to their exact counterparts.

We have demonstrated the efficacy of our time-step limits using a set of numerical examples. In these calculations, our
time-step limits always performed as designed. Specifically, no undesirable behavior — instabilities for the stability time step
limit and both instabilities and nonphysical oscillations for the oscillatory time-step limit — was observed when employing
the maximum time-step size, whereas multiplying the time-step size by at most a factor of four generated undesirable
behavior, which demonstrates that our time-step limits are not overly conservative. In future work, we plan on applying
our time-step limits to more complex radiative-transfer problems that include the effects of absorption, emission, sources,
and photon streaming.
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Appendix A. A proof that the amplification factors are real

To prove that there are no complex amplification factors, we assume that a complex amplification factor does exist, then
show that this assumption leads to a contradiction. For a complex value of x, we again avoid the singularities when solving
Eqs. (63)–(65) and Eqs. (69)–(72) still hold,
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a0 ¼ 0; ð97Þ

a2 ¼
1ffiffiffi
2
p 1� e�2Dt

x� e�2Dt
dT; ð98Þ

ak ¼
bk

k
1� e�kDt

x� e�kDt
dT; ð99Þ
and
CvdT þ 3
ffiffiffi
2
p

a0 þ
ffiffiffi
2
p

a2 þ
Z 1

9=4

2
k

bkak ¼ 0: ð100Þ
Multiplying Eqs. (98)–(100) by the complex conjugate of dT yields
dT
a2 ¼
1ffiffiffi
2
p 1� e�2Dt

x� e�2Dt
jdTj2; ð101Þ

dT
ak ¼
bk

k
1� e�kDt

x� e�kDt
jdTj2; ð102Þ
and
Cv jdTj2 þ 3
ffiffiffi
2
p

dT
a0 þ
ffiffiffi
2
p

dT
a2 þ
Z 1

9=4

2
k

bkdT
ak dk ¼ 0: ð103Þ
The complex conjugates of Eqs. (101)–(103) are
dTa
2 ¼
1ffiffiffi
2
p 1� e�2Dt

x
 � e�2Dt
jdTj2; ð104Þ

dTa
k ¼
bk

k
1� e�kDt

x
 � e�kDt
jdTj2; ð105Þ
and
Cv jdTj2 þ 3
ffiffiffi
2
p

dTa
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ffiffiffi
2
p

dTa
2 þ
Z 1

9=4

2
k

bkdTa
k dk ¼ 0; ð106Þ
where we have employed the fact that Cv ; Dt; k, and bk are real [see Eq. (48)]. When we subtract Eq. (106) from (103), we
have
3
ffiffiffi
2
p
ðdT
a0 � dTa
0Þ þ

ffiffiffi
2
p
ðdT
a2 � dTa
2Þ þ

Z 1

9=4

2
k

bkðdT
ak � dTa
kÞdk ¼ 0: ð107Þ
Evaluating this expression with Eqs. (97), (101), (102), (104), and (105) gives
ðx
 �xÞjdT2j 1� e�2Dt

jx� e�2Dt j2
þ 2

Z 1

9=4

bk

k

	 
2 1� e�kDt

jx� e�kDt j2
dk

" #
¼ 0: ð108Þ
Except for the trivial solution where dT ¼ 0, Eq. (108) is only satisfied if x ¼ x
, which implies that the amplification factor is
real. However, this statement contradicts our assumption, and we conclude that there are no complex amplification factors.

Appendix B. Evaluation of Eqs. (81), (87), and (93)

In this appendix, we demonstrate how to evaluate integrals of the form
Z 1

9=4
kmðk� 2Þ tanh½paðkÞ�

cosh½paðkÞ� dk; ð109Þ
where m = 1, 2, and 3. First, we define a change of variables through Eq. (38),
k ¼ a2 þ 9
4
: ð110Þ
This expression allows us to write Eq. (109) as
Z 1

9=4
kmðk� 2Þ tanh½paðkÞ�

cosh½paðkÞ� dk ¼
Z 1

0
2a a2 þ 9

4

	 
m

a2 þ 1
4

	 

tanhðpaÞ
coshðpaÞ da: ð111Þ
We can then calculate the right side of Eq. (111) using [19]
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Z 1

0
a2kþ1 tanhðpaÞ

coshðpaÞ da ¼ 2kþ 1
p

1
2

	 
2kþ1

jE2kj; k ¼ 0;1; . . . ð112Þ
Here, E2k is an Euler number, examples of which are [19]
E0 ¼ 1; ð113Þ
E2 ¼ �1; ð114Þ
E4 ¼ 5; ð115Þ
E6 ¼ �61; ð116Þ
and
E8 ¼ 1385: ð117Þ
A straightforward combination of Eqs. (111)–(117) yields
Z 1

9=4
kðk� 2Þ tanh½paðkÞ�

cosh½paðkÞ� dk ¼ 4
p
; ð118Þ

Z 1

9=4
k2ðk� 2Þ tanh½paðkÞ�

cosh½paðkÞ� dk ¼ 20
p
; ð119Þ
and
 Z 1

9=4
k3ðk� 2Þ tanh½paðkÞ�

cosh½paðkÞ� dk ¼ 136
p

: ð120Þ
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